کاربردهای نوین فناوری شبکههای هوشمند بین خودرویی در صنعت راهآهن: بسترهای جدید جهت ظهور شرکتهای دانشبنیان در حوزه حملونقل ریلی
محورهای موضوعی : نوآوري و خلاقيت
1 - دانشگاه اصفهان
کلید واژه: شبکه هوشمند بین خودرویی (VANET) شبکه هوشمند بین ناوگان ریلی (RANET) راهآهن فناور نوآوری,
چکیده مقاله :
پيشرفتهاي تکنولوژي و فناوري، راهکار جامع و کاربردي سيستمهاي حملونقل هوشمند (1ITS) را به منظور غلبه بر مشکلات حملونقلي، پيشروي مديران شهري قرار داده است. يکي از مهمترين زيرسيستمهاي ITS که نقش بسزايي در کنترل ترافيک و سوانح دارد، سيستم و یا فناوری شبکه هوشمند بين خودرويي (2VANET) ميباشد. VANET که هدف آن تأمين امنيت و راحتي براي مسافران است، شبکهاي متشکل از خودروها ميباشد که در آن خودروها بهعنوان گرههاي شبکه با استفاده از فناوریهای بيسيم با يکديگر در ارتباط هستند. در این مقاله ضمن معرفی فناوری شبکه VANET کاربردهای نوین آن در صنعت ریلی مورد بحث و بررسی قرار گرفته و فناوری شبکه هوشمند بین ناوگان ریلی (3RANET) پیشنهاد شده است. در RANET ناوگان ریلی گرههای شبکه هستند و دارای ارتباط بیسیم و پویا با یکدیگر میباشند. افزایش درآمد، کاهش هزینهها و سوانح، افزایش کارایی، افزایش رضایت صاحبان کالا و مسافران از مهمترین اهداف صنعت راهآهن است که فناوری RANET در تحقق این اهداف میتواند نقش بسیار مهمی را ایفا نماید و زمینه توسعه حملونقل ریلی بدون راننده را فراهم آورد. RANET میتواند زمینهساز ظهور شرکتهای دانشبنیان در حوزههای فناورانه حملونقل ریلی و بروز خلاقیت و نوآوریهای کاربردی باشد. نتایج مقاله نشان میدهد که شرکتهای دانشبنیان قادر خواهند بود در استفادههای نوین از فناوری RANET در زمینههایی همچون برنامهریزی حرکت قطارها، بلاکبندی پویا، برنامهریزی حملونقل چند وجهی و مدیریت تقاطعها و دستگاههای سوزن خطوط ریلی و غیره فعالیت نمایند.
Advances in technology have provided Intelligent Transport Systems (ITS) for urban managers as a comprehensive and practical solution in order to overcome transportation problems. One of the most important ITS subsystems, which plays a major role in controlling traffic and accidents, is the Vehicular Ad-Hoc Network (VANET) technology. VANET, which aims to provide security and comfort for passengers, is a network of cars in which cars are interconnected as network nodes using wireless technologies. In this paper, introducing the VANET network technology, its new applications in the railway industry have been discussed and Rolling stock Ad-Hoc Network (RANET) has been proposed. In RANET, the rolling stocks are network nodes and have a wireless and dynamic connection with each other. Increasing revenue, reducing costs and accidents, increasing efficiency, increasing cargo owners and passengers’ satisfaction are the most important goals of the railway industry, which RANET technology can play a very significant role in achieving these goals and providing the basis for railway transport without driver. RANET can also provide platforms for the emergence of knowledge based companies in the field of modern and technology-oriented rail transport and can be a source of innovation and creativity. The results of the paper show that knowledge based companies will be able to use RANET technology in areas such as train planning and scheduling, dynamic blocking, multimodal transport planning, intersection and switches management.
1- راهنماي سيستمهاي حمل ونقل هوشمند، وزارت راه و ترابري، معاونت آموزش، تحقيقات و فناوري، پژوهشكده حمل ونقل، 1386.
2- مقدمه اي بر سيستمهاي حملونقل هوشمند، وزارت راه و ترابري، کميته فناوري اطلاعات، 1381.
3- احمدرضا. جعفریان مقدم، بهبود خوشهبندی در شبکههای هوشمند بین خودرویی، پایاننامه دکتری، دانشگاه علم و صنعت ایران، 1394.
4- سهیلا. صادقی فسایی، و ایمان. عرفانمنش، ʼʼمبانی روششناختی پژوهش اسنادی در علوم اجتماعیʻʻ، فصلنامه راهبرد فرهنگ، شماره 8 (29)، 1394، صفحات 61-91.
5- R. Kala, “On-Road Intelligent Vehicles, Chapter 13: Basics of Intelligent Transportation Systems”, Robotics and Artificial Intelligence Laboratory, Indian Institute of Information Technology, Allahabad, India, 2016.
6- A. Paul, N. Chilamkurti, A. Daniel, and S. Rho, “Intelligent Vehicular Networks and Communications: Fundamentals, Architectures and Solutions (Chapter 2)”, Elsevier, 2017.
7- C. Gosman, T. Cornea, C. Dobre, F. Pop, and A. Castiglione, “Castiglione, Controlling and filtering users data in Intelligent Transportation System”, Future Generation Computer Systems, Vol. 78, 2018, pp. 807-816.
8- C. Wang, X. Li, X. Zhou, A. Wang, and N. Nedjah, “Soft computing in big data intelligent transportation systems”, Applied Soft Computing, Vol. 38, 2016, pp. 1099-1108.
9- J. Zeyu, Y. Shuiping, Z. Mingduan, C. Yongqiang, and L. Yi, “Model Study for Intelligent Transportation System with Big Data”, Procedia Computer Science, Vol. 107, 2017, pp. 418-426.
10- T. Petrov, M. Dado, and K.E. Ambrosch, “Computer Modelling of Cooperative Intelligent Transportation Systems”, Procedia Engineering, Vol. 192, 2017, pp. 683-688.
11- S. Sousa, A. Santos, A. Costa, B. Dias, B. Ribeiro, F. Gonçalves, J. Macedo, M.J. Nicolau, and Ó. Gama, “A New Approach on Communications Architectures for Intelligent Transportation Systems”, Procedia Computer Science, Vol. 110, 2017, pp. 320-327.
12- Z. Yang, and L.S.C. Pun-Cheng, Vehicle detection in intelligent transportation systems and its applications under varying environments: A review, Image and Vision Computing, Vol. 69, 2018, pp. 143-154.
13- R. Baumann, “Vehicular Ad hoc Networks: Engineering and simulation of mobile ad hoc routing protocols for VANET on highways and in cities”, Master’s Thesis in Computer Science, ETH Zurich, 2004.
14- H. Rahbar, “Dynamic Time-stable Geocast Routing in Vehicular Ad Hoc Networks”, Master’s Thesis in Electrical and Computer Engineering, University of Waterloo, 2009.
15- L. Fan, and Y. Wang, “Routing in Vehicular Ad Hoc Networks: A Survey”, IEEE Vehicular Technology Magazine, 2007.
16- M. Fathian, and A.R. Jafarian Moghaddam, “New Clustering Algorithms for Vehicular Ad-Hoc Network in a Highway Communication Environment”, Wireless Networks, 2015, DOI: 10.1007_s11276-015-0949-5.
17- M. Fathian, G.R. Shiran, and A.R. Jafarian Moghaddam, “Two New Clustering algorithms for Vehicular Ad-Hoc Network based on Ant Colony System”, Wireless Personal Communications, 2015, 10.1007_s11277-015-2404-4.
18- M. Fathian, M. Yaghini, and A.R. Jafarian Moghaddam, “Improving Vehicular Ad-Hoc Network Stability Using Meta-Heuristic Algorithms”, International Journal of Automotive Engineering, Vol. 4, 2014, pp. 891-901.
19- Y. Liu, J. Bi, and J. Yang, “Research on Vehicular Ad Hoc Networks”, IEEE Xplore: Chinese Control and Decision Conference, 2009.
20- M. Fahad, F. Aadil, S. Ejaz, and A. Ali, “Implementation of evolutionary algorithms in vehicular ad-hoc network for cluster optimization”, Intelligent Systems Conference (IntelliSys), 2017.
21- R. Kitsis, and S. Datta, “Layer 3 Enhancements for Vehicular Ad Hoc Networks”, Procedia Computer Science, Vol. 130, 2018, pp. 628-635.
22- R. Akalu, “Privacy, consent and vehicular ad hoc networks (VANETs)”, Computer Law & Security Review, Vol. 34, 2018, pp. 37-46.
23- A. Alrawais, A. Alhothaily, B. Mei, T. Song, and X. Cheng, “An Efficient Revocation Scheme for Vehicular Ad-Hoc Networks”, Procedia Computer Science, Vol. 129, 2018, pp. 312-318.
24- B. Mokhtar, and M. Azab, “Survey on Security Issues in Vehicular Ad Hoc Networks”, Alexandria Engineering Journal, Vol. 54, 2015, pp. 1115-1126.
25- S. Boussoufa-Lahlah, F. Semchedine, and L. Bouallouche-Medjkoune, “Geographic routing protocols for Vehicular Ad hoc NETworks (VANETs): A survey”, Vehicular Communications, Vol. 11, 2018, pp. 20-31.
26- A.I. Saleh, S.A. Gamel, and K.M. Abo-Al-Ez, “A Reliable Routing Protocol for Vehicular Ad hoc Networks”, Computers & Electrical Engineering, Vol. 64, 2017, pp. 473-495.
27- Y. Agarwal, K. Jain, and O. Karabasoglu, “Smart vehicle monitoring and assistance using cloud computing in vehicular Ad Hoc networks”, International Journal of Transportation Science and Technology, Vol. 7, 2018, pp. 60-73.
28- J. Cui, J. Zhang, H. Zhong, R. Shi, and Y. Xu, “An efficient certificateless aggregate signature without pairings for vehicular ad hoc networks”, Information Sciences, Vol. 451–452, 2018, pp. 1-15.
29- S. Khakpour, R.W. Pazzi, and K. El-Khatib, “Using clustering for target tracking in vehicular ad hoc networks”, Vehicular Communications, Vol. 9, 2017, pp. 83-96.
30- R. Ghebleh, “A comparative classification of information dissemination approaches in vehicular ad hoc networks from distinctive viewpoints: A survey”, Computer Networks, Vol. 131, 2018, pp. 15-37.
31- W. Zhou, and J. Li-Min, “The Theory and Method of Design and Optimization for Railway Intelligent Transportation Systems (RITS)”, Bentham Science Publishers, 2011.
32- A. Sładkowski, “Rail Transport — Systems Approach”, Springer, 2017.
33- J. Qi, L. Yang, Y. Gao, S. Li, and Z. Gao, “Integrated multi-track station layout design and train scheduling models on railway corridors”, Transport. Res. C-Emer, Vol. 69, 2016, pp. 91–119.
34- E. Barrena, D. Canca, L.C. Coelho, and G Laporte, “Exact formulations and algorithm for the train timetabling problem with dynamic demand”, Computers & Operations Research, Vol. 44, 2014, 66–74.
35- V. Cacchiani, A. Caprara, and C. Melchiorri, “Models and Algorithms for Combinatorial Optimization Problems Arising in Railway Applications”, Dottoratodi Ricerca in Automatica Ricerca Operative. Universitá degli Studi di Bologna, 2006.
36- V. Cacchiani, A. Caprara, and M. Fischetti, “A Lagrangian heuristic for robustness, with an application to train timetabling”, Transportation Science, Vol. 46 (1), 2012, pp. 124–133.
37- V. Cacchiani, A. Caprara, and P. Toth, “A column generation approach to train timetabling on a corridor”, Quarterly Journal of Operations Research, Vol. 6, 2008, pp. 125–142.
38- L. Peeters, “Cyclic Railway Timetable Optimization”, Ph.D. Thesis, Erasmus Universiteit Rotterdam, 2003.
39- M. Odijk, “A constraint generation algorithm for the construction of periodic railway timetables”, Transportation Research Part B, Vol. 30 (6), 1996, pp. 455–464.
40- L. Kroon, and L. Peeters, “A variable trip time model for cyclic railway timetabling”, Transportation Science, Vol. 37(2), 2003, pp. 198–212.
41- T. Lindner, and U.T. Zimmermann, “Cost optimal periodic train scheduling”, Mathematical Methods of Operations Research, Vol. 62, 2005, pp. 281–295.
42- C. Liebchen, “The first optimized railway timetable in practice”, Transportation Science, Vol. 42(4), 2008, 420–435.
43- L. Kroon, G. Maróti, M.R. Helmrich, M. Vromansd, and R. Dekker, “Stochastic improvement of cyclic railway timetables”, Transportation Research Part B, Vol. 42, 2008, pp. 553–570.
44- A. Caprara, L. Kroon, M. Monaci, and P. Toth, “Passenger railway optimization”, In: Barnhart, C., Laporte, G. (Eds.), 2007.
45- B. Szpigel, “Optimal train scheduling on a single track railway”, Operational Research, Vol. 72, 1973, pp. 343–352.
46- A. Higgins, E. Kozan, and L. Ferreira, “Optimal scheduling of trains on a single line track”, Transportation Research Part B, Vol. 30(2), 1996, 147–161.
47- X. Zhou, and M. Zhong, “Single-track train timetabling with guaranteed optimality: branch-and-bound algorithms with enhanced lower bounds”, Transportation Research Part B, Vol. 41, 2007, pp. 320–341.
48- K. Ghoseiri, F. Szidarovszky, and M.J. Asgharpour, “A multi-objective train scheduling model and solution”, Transportation Research Part B, Vol. 38, 2004, pp. 927–952.
49- Y. Huang, L. Yang, T. Tang, F. Cao, and Z. Gao, “Saving energy and improving service quality: bicriteria train scheduling in urban rail transit systems”, IEEE Transactions on Intelligent Transportation Systems, Vol. 99, 2016, pp. 1-16.
50- X. Cai, C.J. Goh, “A fast heuristic for the train scheduling problem”, Computers & Operations Research, Vol. 21 (5), 1994, pp. 499–510.
51- B. Djordjević, and K. Evelin, “Application of Multicriteria Decision-Making Methods in Railway Engineering: A Case Study of Train Control Information Systems (TCIS)”, Modern Railway Engineering, 2018.